71 lines
1.7 KiB
Plaintext
71 lines
1.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Imported modules"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import json\n",
|
|
"import scrapping\n",
|
|
"import psycopg2\n",
|
|
"from psycopg2.extras import execute_batch\n",
|
|
"# from psycopg2.extensions import register_adapter"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"conn = psycopg2.connect(\"dbname='dh' user='dh' host='dh.saret.tk' password='qwerty'\")\n",
|
|
"connection = conn.cursor()\n",
|
|
"with open('project_list') as f:\n",
|
|
" for project in f.read().split('\\n'):\n",
|
|
" scrap = scrapping.get_raw_english_texts_of_project(project)\n",
|
|
" connection = connection.execute(\"insert into raw_texts values (%(id_text)s, %(project_name)s, %(raw_text)s)\", scrap)\n",
|
|
" execute_batch(connection, \"insert into raw_texts values (%(id_text)s, %(project_name)s, %(raw_text)s)\", scrap)\n",
|
|
" conn.commit()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "venv",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.13"
|
|
},
|
|
"orig_nbformat": 4
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|