keep dynamic graph

This commit is contained in:
2023-10-17 18:31:03 +03:00
parent 821087138a
commit e1ec317e0e

View File

@@ -1,6 +1,6 @@
import pandas as pd import pandas as pd
import matplotlib.pyplot as plt import plotly.express as px
import numpy as np import plotly.graph_objects as go
# Read the CSV file into a Pandas DataFrame # Read the CSV file into a Pandas DataFrame
file_path = "texts_by_period_and_location_saparated_by_periods_in_columns.csv" file_path = "texts_by_period_and_location_saparated_by_periods_in_columns.csv"
@@ -12,24 +12,21 @@ columns_to_summarize = ["ancient", "old", "middle", "new", "late"]
# Group the data by the "place" column and calculate sums within each group # Group the data by the "place" column and calculate sums within each group
grouped = df.groupby("place")[columns_to_summarize].sum().reset_index() grouped = df.groupby("place")[columns_to_summarize].sum().reset_index()
# Create a list of colors for the inner divisions # Create a bar chart using Plotly
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd"] fig = go.Figure()
# Create the figure and axis for the bar chart # Add a bar trace for each category
fig, ax = plt.subplots() for col in columns_to_summarize:
fig.add_trace(go.Bar(x=grouped["place"], y=grouped[col], name=col))
# Create bars for each place with inner divisions # Customize the layout
bottom = np.zeros(len(grouped)) fig.update_layout(
for i, col in enumerate(columns_to_summarize): title="Summary of Categories by Place with Filtering",
ax.bar(grouped["place"], grouped[col], 0.6, bottom=bottom, color=colors[i], label=col) xaxis_title="Place",
bottom += grouped[col] yaxis_title="Total Count",
xaxis=dict(categoryorder='total descending'),
barmode='group'
)
# Customize the plot # Show the interactive graph
ax.set_ylabel("Total Count") fig.show()
ax.set_title("Summary of Categories by Place with Inner Divisions")
ax.set_xticks(np.arange(len(grouped["place"])))
ax.set_xticklabels(grouped["place"], rotation=45, ha="right")
ax.legend(loc='upper right')
# Display the plot
plt.show()