Files
rpc/main.cpp
2020-09-08 13:40:45 -07:00

444 lines
14 KiB
C++

/*********************************************************************
* Copyright (c) Intel Corporation 2019 - 2020
* SPDX-License-Identifier: Apache-2.0
**********************************************************************/
#include <string>
#include <thread>
#include <cpprest/ws_client.h>
#include <cpprest/json.h>
#include "port.h"
#include "lms.h"
#include "commands.h"
#include "activation.h"
#include "utils.h"
#include "usage.h"
#include "args.h"
#include "info.h"
// timer thread globals
long long g_timeout_val = 0;
const int g_timeout_max = 10;
bool g_thread_alive = true;
// timeout thread function
// used to exit application in case a timeout occurs
void timeout_thread_function(std::condition_variable *cv, std::mutex *mx)
{
while (g_thread_alive)
{
std::chrono::time_point<std::chrono::system_clock> now = std::chrono::system_clock::now();
auto duration = now.time_since_epoch();
long long currTime = std::chrono::duration_cast<std::chrono::seconds>(duration).count();
if (currTime > g_timeout_val)
{
if (currTime - g_timeout_val >= g_timeout_max)
{
cv->notify_all();
// check if timeoutTimer is not 0 since we explicitly set to zero when an
// activation is successfull. If it's not zero, we are in a time out scenario.
if (g_timeout_val)
{
std::cout << std::endl << "Timed-out due to inactivity." << std::endl;
}
break;
}
std::this_thread::sleep_for(std::chrono::seconds(1));
}
}
}
int main(int argc, char* argv[])
{
std::string activation_info;
std::string arg_url;
std::string arg_proxy;
std::string arg_cmd;
std::string arg_dns;
std::string arg_info;
if (argc == 1)
{
std::cout << "Use -h, --help for help." << std::endl;
return 0;
}
// get for help
if (args_get_help(argc, argv))
{
usage_show_help();
return 0;
}
// check for version
if (args_get_version(argc, argv))
{
usage_show_version();
return 0;
}
// check for info
if (args_get_info(argc, argv, arg_info))
{
if (!info_get(arg_info))
{
std::cout << "Incorrect or missing arguments." << std::endl;
std::cout << "Use -h, --help for help." << std::endl;
}
return 0;
}
// get required arguments
if (!args_get_url(argc, argv, arg_url) || !args_get_cmd(argc, argv, arg_cmd))
{
std::cout << "Incorrect or missing arguments." << std::endl;
std::cout << "Use -h, --help for help." << std::endl;
return 0;
}
// Print version info
usage_show_version();
try {
// Get activation info
if (args_get_dns(argc, argv, arg_dns))
{
if (!act_create_request(arg_cmd, arg_dns, activation_info)) throw std::runtime_error("unable to get activation info");
}
else
{
if (!act_create_request(arg_cmd, "" , activation_info)) throw std::runtime_error("unable to get activation info");
}
}
catch (...)
{
std::cerr << std::endl << "Unable to get activation info. Try again later or check AMT configuration." << std::endl;
return 1;
}
try
{
// check if LMS is available
SOCKET s = lms_connect();
closesocket(s);
}
catch (...)
{
// start MicroLMS thread
std::thread main_micro_lms_thread(main_micro_lms);
main_micro_lms_thread.detach();
// wait for MicroLMS to startup
for (int i=0; i<5; i++) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
}
#ifdef DEBUG
std::cout << "Activation info: " << std::endl << activation_info << std::endl;
#endif
// webSocket Interface
web::websockets::client::websocket_client_config client_config;
if (args_get_proxy(argc, argv, arg_proxy))
{
client_config.set_proxy(web::web_proxy(utility::conversions::to_string_t(arg_proxy)));
}
#ifdef DEBUG
// skip certificate verification if debug build
std::cout << "!!! SKIPPING CERTIFICATE VERIFICATION !!!" << std::endl;
client_config.set_validate_certificates(false);
#endif
web::websockets::client::websocket_callback_client client(client_config);
std::condition_variable cv;
std::mutex mx;
SOCKET s;
// set receive handler
client.set_message_handler([&client, &mx, &cv, &s](web::websockets::client::websocket_incoming_message ret_msg)
{
// kick the timer
std::chrono::time_point<std::chrono::system_clock> now = std::chrono::system_clock::now();
auto duration = now.time_since_epoch();
g_timeout_val = std::chrono::duration_cast<std::chrono::seconds>(duration).count();
try
{
// handle message from server
std::string rcv_websocket_msg = ret_msg.extract_string().get();
#ifdef DEBUG
std::cout << std::endl << "<<<<< Received Message " << std::endl;
std::cout << rcv_websocket_msg << std::endl;
#endif
std::cout << "." << std::flush; // dot status output
// parse incoming JSON message
utility::string_t tmp = utility::conversions::convertstring(rcv_websocket_msg);
web::json::value parsed = web::json::value::parse(tmp);
utility::string_t out = U("");
std::string msgMethod = "";
std::string msgApiKey = "";
std::string msgAppVersion = "";
std::string msgProtocolVersion = "";
std::string msgStatus = "";
std::string msgMessage = "";
std::string msgPayload = "";
std::string payloadDecoded = "";
if ( !parsed.has_field(U("method")) || !parsed.has_field(U("apiKey")) || !parsed.has_field(U("appVersion")) ||
!parsed.has_field(U("protocolVersion")) || !parsed.has_field(U("status")) || !parsed.has_field(U("message")) ||
!parsed.has_field(U("payload")) ) {
std::cerr << std::endl << "Received incorrectly formatted message." << std::endl;
cv.notify_all();
g_thread_alive = false;
return;
}
try
{
out = parsed[U("method")].as_string();
msgMethod = utility::conversions::to_utf8string(out);
out = parsed[U("apiKey")].as_string();
msgApiKey = utility::conversions::to_utf8string(out);
out = parsed[U("appVersion")].as_string();
msgAppVersion = utility::conversions::to_utf8string(out);
out = parsed[U("protocolVersion")].as_string();
msgProtocolVersion = utility::conversions::to_utf8string(out);
out = parsed[U("status")].as_string();
msgStatus = utility::conversions::to_utf8string(out);
out = parsed[U("message")].as_string();
msgMessage = utility::conversions::to_utf8string(out);
}
catch (...)
{
std::cerr << std::endl << "Received message parse error." << std::endl;
return;
}
#ifdef DEBUG
std::cout << msgMethod << ", " << msgStatus << ", " << msgMessage << std::endl;
std::cout << rcv_websocket_msg << std::endl;
#endif
// process any messages we can
// - if success, done
// - if error, get out
if (msgMethod.compare("success")==0)
{
// cleanup
g_timeout_val = 0;
// exit
std::cout << std::endl << msgMessage << std::endl;
return;
}
else if (msgMethod.compare("error")==0)
{
// cleanup
g_timeout_val = 0;
// exit
std::cout << std::endl << msgMessage << std::endl;
return;
}
// process payload afterward since success/error messages have zero length
// payloads which cause an exception to be thrown
try
{
out = parsed[U("payload")].as_string();
if (out.length()>0)
{
msgPayload = utility::conversions::to_utf8string(out);
// decode payload
payloadDecoded = util_decode_base64(msgPayload);
}
else
{
// no payload, nothing to do
return;
}
}
catch (...)
{
std::cerr << std::endl << "JSON format error. Unable to parse message." << std::endl;
return;
}
try
{
// conntect to lms
s = lms_connect();
}
catch (...)
{
std::cerr << std::endl << "Unable to connect to Local Management Service (LMS). Please ensure LMS is running." << std::endl;
return;
}
#ifdef DEBUG
std::cout << std::endl << "vvvvv Sending Message " << std::endl;
std::cout << payloadDecoded << std::endl;
#endif
// send message to LMS
if (send(s, payloadDecoded.c_str(), (int)payloadDecoded.length(), 0) < 0)
{
throw std::runtime_error("error: socket send");
}
// handle response message from LMS
int fd = ((int) s) + 1;
fd_set rset;
FD_ZERO(&rset);
FD_SET(s, &rset);
timeval timeout;
memset(&timeout, 0, sizeof(timeval));
timeout.tv_sec = 2;
timeout.tv_usec = 0;
// read until connection is closed by LMS
while (1)
{
std::string superBuffer = "";
while (1)
{
int res = select(fd, &rset, NULL, NULL, &timeout);
if (res == 0)
{
// we timed-out waiting for the ME. ME usually delivers data very fast. If
// we time out, it means that there is no more data that the ME needs to send,
// but it's keeping the connection open.
break;
}
// read from LMS
char recv_buffer[4096];
memset(recv_buffer, 0, 4096);
res = recv(s, recv_buffer, 4096, 0);
if (res > 0)
{
#ifdef DEBUG
std::cout << std::endl << "^^^^^ Received Message" << std::endl;
std::cout << recv_buffer << std::endl;
#endif
superBuffer += recv_buffer;
}
else if (res < 0)
{
// on LMS read exception
break;
}
else
{
// case where res is zero bytes, select returns 1
// with recv returning 0 to indicate close
break;
}
} // while select()
// if there is some data send it
if (superBuffer.length() > 0)
{
std::string response;
if (!act_create_response(superBuffer.c_str(), response)) return;
web::websockets::client::websocket_outgoing_message send_websocket_msg;
std::string send_websocket_buffer(response);
send_websocket_msg.set_utf8_message(send_websocket_buffer);
#ifdef DEBUG
std::cout << std::endl << ">>>>> Sending Message" << std::endl;
std::cout << superBuffer << std::endl;
std::cout << send_websocket_buffer << std::endl;
#endif
client.send(send_websocket_msg).wait();
// done
closesocket(s);
return;
}
}
closesocket(s);
}
catch (...)
{
std::cerr << std::endl << "Communication error in receive handler." << std::endl;
closesocket(s);
}
});
// set close handler
client.set_close_handler([&mx,&cv](web::websockets::client::websocket_close_status status, const utility::string_t &reason, const std::error_code &code)
{
// websocket closed by server, notify main thread
cv.notify_all();
});
try
{
// connect to web socket server; AMT activation server
client.connect(utility::conversions::to_string_t(arg_url)).wait();
}
catch (...)
{
std::cerr << "Unable to connect to websocket server. Please check url." << std::endl;
exit(1);
}
try
{
// send activationParams to websocket
web::websockets::client::websocket_outgoing_message out_msg;
out_msg.set_utf8_message(activation_info);
#ifdef DEBUG
std::cout << std::endl << ">>>>> Sending Activiation Info" << std::endl;
std::cout << activation_info << std::endl;
#endif
client.send(out_msg).wait();
}
catch (...)
{
std::cerr << std::endl << "Unable to send message to websocket server." << std::endl;
exit(1);
}
std::chrono::time_point<std::chrono::system_clock> now = std::chrono::system_clock::now();
auto duration = now.time_since_epoch();
g_timeout_val = std::chrono::duration_cast<std::chrono::seconds>(duration).count();
std::thread timeoutThread(timeout_thread_function, &cv, &mx);
// wait for server to send success/failure command
std::unique_lock<std::mutex> lock(mx);
cv.wait(lock);
// wait for timeout thread
timeoutThread.join();
// clean-up websocket
client.close().wait();
// clean-up socket
if (s) {
shutdown(s, SD_BOTH);
closesocket(s);
}
exit(0);
}