{ "cells": [ { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "import sklearn\n", "import sklearn.model_selection\n", "from sklearn.metrics.pairwise import cosine_similarity\n", "from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer\n", "import pandas as pd\n", "import scipy\n", "\n", "df_eng = pd.read_csv('raw_texts.csv')\n", "df_akk = pd.read_csv('new.csv')\n", "# akk_raw_train, akk_raw_test = sklearn.model_selection.train_test_split(df_akk, test_size=0.2, random_state=0)\n", "# eng_raw_train, eng_raw_test = sklearn.model_selection.train_test_split(df_eng, test_size=0.2, random_state=0)\n", "tf_vectorizer = TfidfVectorizer(analyzer='word')\n", "# tf_vectorizer.fit(akk_raw_train['Text'].to_list())" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "tf_vectorizer = TfidfVectorizer(analyzer='word')\n", "save_vect = tf_vectorizer.fit_transform(df_akk['Text'].dropna().to_list())\n", "# save_vect = tf_vectorizer.fit_transform(['The sun in the sky is bright', 'We can see the shining sun, the bright sun.'])\n" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "tfidf_tokens = tf_vectorizer.get_feature_names_out()\n", "df_tfidfvect = pd.DataFrame(data=save_vect.toarray(), columns=tfidf_tokens)\n" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "test_mat = tf_vectorizer.transform(df_akk['Text'].dropna().to_list())\n", "cc = cosine_similarity(save_vect,save_vect)\n" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "Cannot set a DataFrame with multiple columns to the single column Genre", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", "Cell \u001b[1;32mIn[22], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m df_genre \u001b[39m=\u001b[39m pd\u001b[39m.\u001b[39mread_csv(\u001b[39m'\u001b[39m\u001b[39mgenre.csv\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[1;32m----> 2\u001b[0m df_akk[\u001b[39m\"\u001b[39;49m\u001b[39mGenre\u001b[39;49m\u001b[39m\"\u001b[39;49m] \u001b[39m=\u001b[39m pd\u001b[39m.\u001b[39mconcat([df_genre, df_akk], axis\u001b[39m=\u001b[39m\u001b[39m1\u001b[39m, join\u001b[39m=\u001b[39m\u001b[39m'\u001b[39m\u001b[39minner\u001b[39m\u001b[39m'\u001b[39m, keys\u001b[39m=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mProject\u001b[39m\u001b[39m'\u001b[39m)\n", "File \u001b[1;32mc:\\Users\\Saret\\Programming\\C#\\DH\\venv\\lib\\site-packages\\pandas\\core\\frame.py:3949\u001b[0m, in \u001b[0;36mDataFrame.__setitem__\u001b[1;34m(self, key, value)\u001b[0m\n\u001b[0;32m 3947\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_setitem_array(key, value)\n\u001b[0;32m 3948\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39misinstance\u001b[39m(value, DataFrame):\n\u001b[1;32m-> 3949\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_set_item_frame_value(key, value)\n\u001b[0;32m 3950\u001b[0m \u001b[39melif\u001b[39;00m (\n\u001b[0;32m 3951\u001b[0m is_list_like(value)\n\u001b[0;32m 3952\u001b[0m \u001b[39mand\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcolumns\u001b[39m.\u001b[39mis_unique\n\u001b[0;32m 3953\u001b[0m \u001b[39mand\u001b[39;00m \u001b[39m1\u001b[39m \u001b[39m<\u001b[39m \u001b[39mlen\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcolumns\u001b[39m.\u001b[39mget_indexer_for([key])) \u001b[39m==\u001b[39m \u001b[39mlen\u001b[39m(value)\n\u001b[0;32m 3954\u001b[0m ):\n\u001b[0;32m 3955\u001b[0m \u001b[39m# Column to set is duplicated\u001b[39;00m\n\u001b[0;32m 3956\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_setitem_array([key], value)\n", "File \u001b[1;32mc:\\Users\\Saret\\Programming\\C#\\DH\\venv\\lib\\site-packages\\pandas\\core\\frame.py:4103\u001b[0m, in \u001b[0;36mDataFrame._set_item_frame_value\u001b[1;34m(self, key, value)\u001b[0m\n\u001b[0;32m 4100\u001b[0m \u001b[39mreturn\u001b[39;00m\n\u001b[0;32m 4102\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(value\u001b[39m.\u001b[39mcolumns) \u001b[39m!=\u001b[39m \u001b[39m1\u001b[39m:\n\u001b[1;32m-> 4103\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[0;32m 4104\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mCannot set a DataFrame with multiple columns to the single \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 4105\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mcolumn \u001b[39m\u001b[39m{\u001b[39;00mkey\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m\n\u001b[0;32m 4106\u001b[0m )\n\u001b[0;32m 4108\u001b[0m \u001b[39mself\u001b[39m[key] \u001b[39m=\u001b[39m value[value\u001b[39m.\u001b[39mcolumns[\u001b[39m0\u001b[39m]]\n", "\u001b[1;31mValueError\u001b[0m: Cannot set a DataFrame with multiple columns to the single column Genre" ] } ], "source": [ "df_genre = pd.read_csv('genre.csv')\n", "df_akk[\"Genre\"] = pd.concat([df_genre, df_akk], axis=1, join='inner', keys='Project')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }