demostration

This commit is contained in:
2023-08-12 17:46:38 +03:00
parent 46152eadbf
commit f8e1c4d062

View File

@@ -40,5 +40,8 @@ li{
### עיבוד הנתונים
השלב הבא, לאחר איסוף הנתונים, הוא שלב העיבוד. שלב זה היה יחסית מאתגר. לאחר חודשים שבהם ניסיתי להריץ מספר מודלים פשוטים כגון Word2Vec, TF-IDF, Doc2Vec ועוד, התקבלו תוצאות מוזרות, של קשרים שהתאימו רק בין טקסט לבין עצמו, התאמה של 1, והשאר, היו על התאמה של 0.
לאחר מספר חודשים של ניסיונות, ונטישות, פניתי לעזרת פורום פייסבוק בקבוצת MDLI, שם הציעו לי מחדש ללכת על מודלים פשוטים, ואף שלחו לי מספר קישורים מתוך toward
לאחר מספר חודשים של ניסיונות, ונטישות, פניתי לעזרת פורום פייסבוק בקבוצת MDLI, שם הציעו לי מחדש ללכת על מודלים פשוטים, ואף שלחו לי מספר קישורים מתוך medium ([TF-IDF Vectorizer scikit-learn](https://medium.com/@cmukesh8688/tf-idf-vectorizer-scikit-learn-dbc0244a911a) ו־[Understanding TF-IDF and Cosine Similarity for Recommendation Engine](https://medium.com/geekculture/understanding-tf-idf-and-cosine-similarity-for-recommendation-engine-64d8b51aa9f9) ), והייתה לי התקדמות במודל. ואולם, על אף שהצליחו לצאת לי תוצאות, לא הצלחתי לייצר גרף מהווקטורים הללו.
### הדגמת תוצאות:
שני טקסטים שנמצאו בעלי קרבה של כ־87% הם למשל, [P394767](http://oracc.iaas.upenn.edu/btto/P394767/html) ו־[P395011](http://oracc.iaas.upenn.edu/btto/P395011/html). לאחר בדיקה קצרה של הטקסטים הללו, גם לעיניים שלי, הם נראו דומים. ובאמת, שני הטקסטים הללו מגיעים מאותה רשימה קאנונית המכונה "House most high".
</div>